Automation \& Sensing

Selection Guide 140
PS5R Slim Line Series 141
Part Numbers 142
Specifications 143
Dimensions and Terminal Markings 145
PS5R Standard Series 147
Part Numbers 147
Specifications 148
Dimensions. 151
PS3X Series 152
Part Numbers 152
Specifications 153
Dimensions 155
Safety Precautions 157

IDEC

www.IDEC.com/powersupply

Power Supplies

Selection Guide

Key features:

- Lightweight and compact in size
- Wide power range: $10 \mathrm{~W}-240 \mathrm{~W}$
- Universal input:

10W to 90W: 85-264V AC/100-370V DC 120 W and $240 \mathrm{~W}: 85-264 \mathrm{~V}$ AC/100-350V DC

- Power Factor Correction for 60W to 240W (EN61000-3-2)
- Meets SEMI F47 Sag Immunity (120W \& 240W only)
- UL Listed for Class 1, Div. 2 Hazardous Locations
- Overcurrent protection, auto-reset
- Overvoltage protection, shut down
- Spring-up screw terminal type, IP20
- DIN rail or panel surface mount
- Approvals:

CE Marked
TÜV
c-UL, UL508
UL1310 (PS5R-SB, -SC, -SD)

PS5R Slim Line Series
 Switching Power Supplies

Designed with Accessibility \& Convenience in Mind!

DC Low Indicator

The indicator turns on when the output voltage drops below 80% of the rated value. This assists in troubleshooting power supply problems.

DC ON Indicator

The indicator turns on when the unit is powered up. This is a convenient way to know when the power supply is receiving power.

Output Voltage Adjustment

The output voltage can be easily adjusted within $\pm 10 \%$ of the rated voltage.

Fingersafe, Spring-up Screw Terminals
Don't worry about losing screws or getting an inadvertent shock from a terminal. The terminals are captive spring-up screws, which makes using them as easy as pushing a screw down and tightening it.
They are shock and vibration resistant, and work with ring lugs, fork connectors or stripped wire connections. The terminals are rated IP20 (when tightened) meaning they are recessed to keep fingers and objects from touching the input contacts.

Universal Input Power

The applied input power has a range of $85-264 \mathrm{~V}$ AC ($100-350 \mathrm{~V} D C$) without the use of jumpers or slide switches. This makes IDEC power supplies suitable for use anywhere in the world.

Long Life Expectancy

IDEC power supplies are very reliable, with a life expectancy of 70,000 hrs. (minimum) or longer, depending on usage. Power factor correction has also been included to minimize harmonic distortion, resulting in a longer operating life and increased reliability.

Output Channel

With very low output ripples of less than 1% peak to peak, the 120 W and 240 W power supplies are some of the best in the industry. The output comes with overload protection that avoids damaging the power supply and the spring-up, fingersafe, screw terminals add a level of safety and ease for the user. The 240W power supply also has the convenience of two output terminals.

Part Numbers

| Appearance | Description | Acessories |
| :--- | :--- | :--- | :--- |

Power Supplies

PS5R Slim Line

Specifications

Model		5V DC output	PS5R-SB05	-	-	-	-	-
		12V DC output	PS5R-SB12	PS5R-SC12	-	-	-	-
		24V DC output	PS5R-SB24	PS5R-SC24	PS5R-SD24	PS5R-SE24	PS5R-SF24	PS5R-SG24
Output Capacity			15 W (5V Model is 10W)	30W	60 W	90W	120W	240W
$\begin{aligned} & \text { 芌 } \\ & \text { ㅡㅡ } \end{aligned}$	Input Voltage (single-phase, 2-wire)		85 to 264 V AC, 100 to 370 V DC				85 to 264 V AC, 100 to 350 V DC	
	Input Current (maximum)	100VAC	0.45A	0.9A	1.7A	2.3 A	1.8A	3.5 A
		200VAC	0.3 A	0.6A	1.0A	1.4A	1.0A	1.7A
	Internal Fuse Rating		2 A	3.15 A		4 A		6.3 A
	Inrush Current (cold start)		50 A maximum (at 200V AC)					
	Leakage Current (at no load)		132V AC: 0.38 mA maximum 264V AC: 0.75 mA maximum	0.75 mA maximum			1mA maximum	
	Typical Efficiency	5V DC	69\%	-	-	-	-	-
		12 V DC	75\%	78\%	-	-	-	-
		24V DC	79\%	80\%	83\%	82\%	84\%	
$\begin{aligned} & \text { 픔 } \\ & \text { 号 } \end{aligned}$	Output Current Ratings	5 V DC	2.0 A	-	-	-	-	-
		12V DC	1.2A	2.5 A	-	-	-	-
		24V DC	0.65 A	1.3A	2.5 A	3.75 A	5A	10A
	Voltage Adjustment		$\pm 10 \%$ (V. ADJ control on front)					
	Output Holding Time		20 ms minimum (at rated input and output)					
	Starting Time		200 ms maximum	-	-	-	650 ms maximum	500 ms maximum
	Rise Time		100 ms maximum (at rated input and output)				200 ms maximum	
	Line Regulation		0.4\% maximum					
	Load Regulation		1.5\% maximum					0.8\% max
	Temperature Regulation		0.05\% degree C maximum					
	Ripple Voltage		2% peak to peak maximum (including noise)				1\% peak to peak maximum (including noise)	
	Overcurrent Protection		105\% or more, auto reset			105 to 130\%, auto reset	103 to 110\%, auto reset	
	Overvoltage Protection		120\% min. SHUTDOWN					
	Operation Indicator		LED (green)					
	Voltage Low Indication		LED (amber)	-	-	-	LED (amber)	
Dielectric Strength			Between Input and Ground: 2000 V AC, 1 minute Between input and output: 3000V AC, 1 minute; Between output and ground: 500 V AC, 1 minute.					
Insulation Resistance			Between Input \& Output Terminals: $100 \mathrm{M} \Omega \mathrm{Min}$					
Operating Temperature			-10 to $+65^{\circ} \mathrm{C}\left(14\right.$ to $\left.149^{\circ} \mathrm{F}\right)$	-10 to $60^{\circ} \mathrm{C}$ (14 to $140^{\circ} \mathrm{F}$)				
Storage Temperature			-25 to $75^{\circ} \mathrm{C}\left(-13\right.$ to $\left.+167^{\circ} \mathrm{F}\right)$					
Operating Humidity			20 to 90% relative humidity (no condensation)					
Vibration Resistance			Frequency 10 to 55Hz, Amplitude 0.375 mm					
Shock Resistance			$300 \mathrm{~m} / \mathrm{s}^{2}(30 \mathrm{G}) 3$ times each in 6 axes					
Approvals			EMC: EN61204-3 (EMI: Class B, EMS: Industrial), c-UL (CSA 22.2 No. 14), ANSI/ISA-12.12.01-2011, UL508, LVD: EN60950, EN50178					
			UL1310 Class 2, c-UL (CSA 22.2 No. 213 and 223)			-	SEMI F47	
Harmonic Directive			N/A			EN61000-3-2 A14 class A		
Weight (approx.)			160g	250g	285g	440 g	630 g	1000 g
Terminal Screw			M3.5 slotted-Phillips head screw (screw terminal type)					
IP protection			IP20 fingersafe					
Dimensions H x W x D (mm)			$90 \times 22.5 \times 95$	95×3	$\times 108$	$115 \times 46 \times 121$	$115 \times 50 \times 129$	$125 \times 80 \times 149.5$
Dimensions H x W x (inches)			$3.54 \times 0.89 \times 3.74$	3.74×1	2×4.25	$4.53 \times 1.81 \times 4.76$	$4.53 \times 1.97 \times 5.08$	$4.92 \times 3.15 \times 5.89$
1. For dimensions, see page 145 .								

Temperature Derating Curves

All IDEC Slim Line power supplies are listed to UL508, which allows operation at 100% capacity inside a panel. This eliminates the need to use oversize power supplies or utilize two power supplies derated at 50% of their rated output.

The charts below show that the PS5R Slim 10 W (at $60^{\circ} \mathrm{C}$) and 15 W (at $60^{\circ} \mathrm{C}$), $30 \mathrm{~W} / 60 \mathrm{~W} / 90 \mathrm{~W}$ (at $55^{\circ} \mathrm{C}$), 120 W (at $40^{\circ} \mathrm{C}$), and 240 W (at $45^{\circ} \mathrm{C}$) meet the elevated, operating temperature required by UL508 and EN60950 standards to operate at an output current of 100%. The output current starts to derate beyond the required temperature.

PS5R-SB

Dearting curve for PS5R-SB varies depending on mounting method (see right).

PS5R-SD, -SE, -SF

PS5R-SC

PS5R-SG

PS5R-SE 90W/3.75A/24V DC versus a Leading Competitor
Standard derating curve (operating temperature vs. output current)

Don't Believe the Hype

Other companies use slick marketing to sell you 60W power supplies with a "BOOST," but what they don't tell you is that these are merely 90 W power supplies that have been renamed to fool you into thinking they have a unique feature. IDEC 90W power supplies are just what they claim, 90W power supplies. The truth is IDEC led the market by incorporating UL508 DIN rail mount power supplies as a standard product. Don't let the other guys pull a fast one on you by claiming to provide features that just aren't true, or even possible. See what IDEC has to offer, no strings attached.

Overload Protection

Overload protection prevents the power supply from being damaged when an overload occurs. There are two kinds of protection.

Overcurrent Protection

When the output current exceeds 105% of the rated current, overload protection is triggered, and the output voltage starts decreasing. When the output current returns within the rated range, the overload protection function is automatically cleared.

Overvoltage Protection

Overvoltage Protection

When the output voltage of the power supply rises to 120% or more of the rated value, the output will shut off. To restore power, only manual reset is available which is an advantage in troubleshooting.

Overcurrent Protection PS5R-SF, -SG

SEMI-F47 Approved

The SEMI F47 (Semiconductor Processing Equipment Voltage Sag Immunity) defines the minimum voltage sag ride-through requirements for semiconductor processing, automated test equipment and other equipment. It requires that the equipment be able to tolerate voltage sags on an AC power line without interrupting operations. This avoids the loss of production and money.

The graph shows how the equipment must tolerate sags to 50% for 200 ms , sags to 70% for up to 0.5 seconds and sags to 80% for up to 1 second.

Voltage Sag Sliding Scale PS5R-SF, -SG

Dimensions and Terminal Markings

PS5R-SB		
Height Width Depth	90 mm 22.5 mm 95 mm	\bigcirc^{\oplus}
		Oow
		(i) ${ }^{2}$
		\%
		O-vore

PS5R-SF
$\begin{array}{ll}\text { Height } & 115.0 \mathrm{~mm} \\ \text { Width } & 50.0 \mathrm{~mm} \\ \text { Depth } & 129.0 \mathrm{~mm}\end{array}$
PS5R-SC

PS5R-SD

$\begin{array}{ll}\text { Height } & 95.0 \mathrm{~mm} \\ \text { Width } & 36.0 \mathrm{~mm} \\ \text { Depth } & 108.0 \mathrm{~mm}\end{array}$

PS5R-SG
$\begin{array}{ll}\text { Height } & 125.0 \mathrm{~mm} \\ \text { Width } & 80.0 \mathrm{~mm} \\ \text { Depth } & 149.5 \mathrm{~mm}\end{array}$

Front Panel (terminals)

Markings	Name	Description
V. ADJ	Voltage adjustment	Adjusts within $\pm 10 \%$; turn clockwise to increase output voltage.
DC ON	Operation indicator	Green LED is lit when output voltage is on.
DC Low	Output indicator	Amber LED is lit when output voltage drops below 80\% of rated voltage.
+V, -V	DC output terminals	+V: Positive output Terminal -V: Negative output terminal
\bigoplus	Frame ground	Ground this terminal to reduce high-frequency noise caused by switching power supply.
L, N	Input terminals	Accept a wide range of voltages and frequen- cies (no polarity at DC input).

Mounting Bracket Dimensions (mm)

PS9Z-5R2B (for PS5R-SB)

PS9Z-5R1C (for PS5R-SC \& PS5R-SD)

PS9Z-5R1E (for PS5R-SE)

PS9Z-5R1G (for PS5R-SF \& PS5R-SG)

PS5R Standard Series
 Switching Power Supplies

Key features:

- Wide power range: 7.5W-240W
- Universal input:
7.5W-50W: 85-264V AC/105-370V DC

100W: 85-132V AC/170-264V AC 240-370V DC (selectable)
75W, 120W, 240W: 85-264V AC/110-350V DC

- Overcurrent/overvoltage protection
- Power Factor Correction (75W, 120W, 240W models) EN61000-3-3
EN61000-3-2
- Voltage adjustment $+10 \%$
- Spring-up crew terminal, IP20 (finger-safe)
- DIN rail or panel surface mount
- Approvals:

CE marked
UL 508 Listed
c-UL
TÜV approved
EMC Directives:
EN50081-2
EN50082-2
EN61000-6-2

LVD EN60950:2000

Part Numbers

Specifications

Model		PS5R-A05	PS5R-B05*	-	-		-		-
		PS5R-A12	PS5R-B12	PS5R-C12	-		-		-
		PS5R-A24	PS5R-B24	PS5R-C24	PS5R-D24	PS5R-024	PS5R-E24	PS5R-F24	PS5R-G24
Output Capacity		7.5W	15W	30W	50W	75W	100W	120W	240W
$\begin{aligned} & \text { 芌 } \\ & \text { ㅡㅡ } \end{aligned}$	Input Voltage (singlephase, 2-wire)	100 to 240 V AC nominal (85 to 264 V AC), $50 / 60 \mathrm{~Hz}$ (47 to 63 Hz) 110 to 340 V DC nominal (105 to 370 V DC)					100 to 120 V AC, 50/60Hz 200 to 240 V AC, 50/60Hz (jumper selectable) 240 to 370V DC	100 to 240 V AC, $50 / 60 \mathrm{~Hz}$, 110 to 340 V DC	
	Input Current (typical)	0.17A at 100V AC	0.3 A at 100 V AC	0.68 A at 100V AC	1.15 A at 100V AC	1.1 A at 100V AC	$\begin{aligned} & 2.5 \mathrm{~A} \text { at } 100 \mathrm{~V} \mathrm{AC} \\ & 1.5 \mathrm{~A} \text { at } 200 \mathrm{~V} \mathrm{AC} \end{aligned}$	1.8 A at 100 V AC	4A at 100V AC
	Internal Fuse Rating	2A	2 A	3.15A	3.15A	3.15A	4A	4A	6.3A
	Inrush Current	50A maximum (at cold start at 200V AC)				70A maximum (at cold start at 230V AC)	50A maximum (at cold start at 200 V AC)	70A maximum (at cold start at $230 \mathrm{VAC})$	

0.75 mA maximum (60 Hz , measured in conformance with UL, CSA, VDE)

69% at 5 V 75% at 12 V 79% at 24 V	75% at 12 V 75% at 24 V	79% at 24 V	83% at 24 V	85% at 24 V	83% at 24 V

Overvoltage Protection

Outputs turns off at 105\% (typical)							
5V, 1.5A 12V, 0.6A 24V, 0.3A	$\begin{aligned} & 5 \mathrm{~V}, 2.5 \mathrm{~A} \\ & 12 \mathrm{~V}, 1.2 \mathrm{~A} \\ & 24 \mathrm{~V}, 0.6 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 12 \mathrm{~V}, 2.5 \mathrm{~A} \\ & 24 \mathrm{~V}, 1.3 \mathrm{~A} \end{aligned}$	24V, 2.1A	24V, 3.1A	24V, 4.2A	24V, 5A	24V, 10A
$\pm 10 \%$ (V.ADJ screw on top)							
$20 \mathrm{~ms} \mathrm{minimum} \mathrm{(at} \mathrm{full} \mathrm{rated} \mathrm{input} \mathrm{and} \mathrm{output)}$							
$200 \mathrm{~ms} \mathrm{maximum} \mathrm{(at} \mathrm{full} \mathrm{rated} \mathrm{input} \mathrm{and} \mathrm{output)}$							150ms max.
0.4\% maximum							
1.5\% maximum							

Load Regulation 1.5\% maximum

Fluctuation due to
Ambient Temperature Change

Ripple Voltage
Overload Protection
Operation Indicator
Parallel Operation
Allowed

Dielectric Strength

Insulation Resistance
Operating Temperature
Storage Temperature Operating Humidity
Vibration Resistance
Shock Resistance
Approvals

Weight

Termination

IP protection
Dimensions H x W x D (mm)

Dimensions H x W x D (inches)

1. For dimensions, see page 151.
2. For usage instructions, see page 150 .

Temperature Derating Curves

PS5R-A/B

PS5R-E

PS5R-F/G

PS5R-C/D

PS5R-0

A Mounting (standard)

B Mounting (Facing Upward)

Accessories

Installation Instructions

Time-Saving Spring-up Terminals

The innovative terminals on the PS5R series use a spring-loaded screw. This makes installation as easy as pushing down and turning with a screwdriver. Installation time is cut in half since the screws do not need to be backed out to install wiring. The screws are held captive once installed and are 100% finger-safe. Screw terminals accept bare wire or ring or fork connectors.

1. Insert the wire connector into the slot on the side of the power supply.

2. Using a flat head or Phillips screwdriver, push down and turn the screw.

The wire is now connected, and the screw terminal is fingersafe!

$$	Front Panel (terminals)		
	Markings	Name	Description
	V. ADJ	Voltage adjustment	Adjusts within $\pm 10 \%$; turn clockwise to increase output voltage
	DC ON	Operation indicator	Green LED is lit when output voltage is on
	$+\mathrm{V},-\mathrm{V}$	DC output terminals	+V : Positive output Terminal - V: Negative output terminal
	\bigoplus	Frame ground	Ground this terminal to reduce high-frequency currents caused by switching
	L, N	Input terminals	Accept a wide range of voltages and frequencies (no polarity at DC input)
	NC	No connection	Do not insert wires here, as this may damage the power supply

Overcurrent Protection Characteristics
PS5R-A/B

PS5R-C/D/E

PS5R-A (7.5W)

PS5R-D (50W)

PS5R-E (100W)

Dimensions

PS5R-B (15W)

PS5R-0 (75W)

PS5R-C (30W)

PS5R-F (120W)

Terminal Markings

PS5R-A/B

PS5R-C/D/0/F/G

PS5R-E

PS3X Series

Key features:

- Compact size
- Universal AC input voltage
- $5 \mathrm{~V}, 12 \mathrm{~V}$ and 24 V DC outputs
- Available with mounting brackets for direct or DIN rail mounting
- Overcurrent/overvoltage protection
- EMC, EN55022 Class B compliant
- UL/c-UL recognized, TUV

Part Numbers

Power Supply

Part Number Configuration

L-shaped Mounting Bracket (optional)

Applicable Power Supply	Part Number
PS3X-B	PS9Z-3N3A
PS3X-C	PS9Z-3N3B
PS3X-D	PS9Z-3E3B
PS3X-0	PS9Z-3N3E
PS3X-E	

DIN-rail Mounting Bracket (optional)

Applicable Power Supply	Part Number
PS3X-B	PS9Z-3N4B
PS3X-C	PS9Z-3E4C
PS3X-D	PS9Z-3E4D
PS3X-Q	
PS3X-E	

DIN Rail

Appearance	Part Number	Length	Material
	Weight (g)		
	BNDN1000	1000 mm	Aluminum 200

End Clips

Appearance Part Number Description

BNL5 | small DIN rail end clip |
| :--- |
| Bedium DIN rail end clip (the BNL6 has a |
| higher profile than BNL5) |

Specifications

Model				$\begin{gathered} {[15 \mathrm{~W}]} \\ \text { PS3X-B05/B12/B24 } \end{gathered}$	$\begin{gathered} {[25 \mathrm{~W}]} \\ \text { PS3X-C05/C12/C24 } \\ \hline \end{gathered}$	$\begin{gathered} {[50 \mathrm{~W}]} \\ \text { PS3X-D12/D24 } \end{gathered}$	$\begin{gathered} {[75 \mathrm{~W}]} \\ \text { PS3X-005/012/024 } \end{gathered}$	$\begin{gathered} {[100 \mathrm{~W}]} \\ \text { PS3X-E05/E12/E24 } \\ \hline \end{gathered}$
Input	Rated Input Voltage			100 to 240V AC				
	Voltage Range (Note 1)			85 to 264V AC/ 120 to 375 V DC	88 to 264V AC / 125 to 375V DC			
	Frequency			47 to 63 Hz				
	Input Current			0.5A max.	0.65A max.	1.3A max.	1.8A max.	2.5A max.
	Inrush Current ($\mathrm{Ta}=-25^{\circ} \mathrm{C}$, ACV cold start)		at 115 V AC	40A max.	30A max.	30A max.	30A max.	35A max.
			at 230 V AC	60A max.	50A max.	50A max.	50A max.	70A max.
	Leakage Current			$0.5 m A$ max.	1.5mA max.	1.5mA max.	1.5mA max.	1.5mA max.
	Efficiency (Typ.) (230V AC at input/ rated output)		5 V	77\%	77\%	-	77\%	77\%
			12 V	81\%	81\%	81\%	82\%	81\%
			24 V	82\%	84\%	84\%	84\%	84\%
Output	Rated Voltage/Current			$5 \mathrm{~V}, 3 \mathrm{~A}$	5V, 5A	-	$5 \mathrm{~V}, 12 \mathrm{~A}$	5V, 16A
				12V, 1.3A	12V, 2.1A	12V, 4.2A	12V, 6A	12V, 8.5A
				24V, 0.63A	24V, 1.1A	$24 \mathrm{~V}, 2.2 \mathrm{~A}$	24V, 3.2A	$24 \mathrm{~V}, 4.5 \mathrm{~A}$
	Adjustable Voltage Range			$\pm 10 \%$				
	Output Holding Time			13 ms typ. (100V AC) 60 ms minimum (230V AC)	10 ms typ. (100V AC) 60 ms minimum (230V AC)	23 ms typ. (100V AC) 60 ms minimum (230V AC)	14 ms typ. (100V AC) 60 ms minimum (230V AC)	17 ms typ. (100V AC) 80 ms minimum (230V AC)
	Start Time			1000 ms max. (230V AC input, rated output)				
	Rise Time			50 ms max (230V AC input, rated output)	30 ms max. (230V AC input, rated output)	30 ms max. (230V AC input, rated output)	30 ms max. (230V AC input, rated output)	30 ms max. (230V AC input, rated output)
	Input Fluctuation			0.5\% max.				
	Overvoltage Fluctuation			$5 \mathrm{~V}: \pm 2 \%$ max. 12V, 24V: $\pm 1 \%$ max.				
		rature	uctuation	$0.04 \% /{ }^{\circ} \mathrm{C}$ max. (-20 to $+50^{\circ} \mathrm{C}$)		$0.04 \% /{ }^{\circ} \mathrm{C}$ max. (-10 to $+45^{\circ} \mathrm{C}$)		
		-20 to	$-10^{\circ} \mathrm{C}$	5V: 200mV max. 12V/24V: 200mV max	5V: 140 mV max. 12V: 240 mV max. 24V: 300mV max.	-	-	-
		-10 to		5V: 160mV max. 12V/24V: 200mV max.	5V: 140mV max. 12V: 240 mV max. 24V: 300mV max.	12V: 240 mV max. 24V: 300 mV max.	5V: 140 mV max. 12V: 240 mV max. 24V: 300 mV max.	5V: 160mV max. 12V: 240 mV max. 24V: 300mV max.
			$\begin{aligned} & \text { C: } 0 \text { to }+50^{\circ} \mathrm{C} \\ & \text { O, E: } 0 \text { to }+45^{\circ} \mathrm{C} \end{aligned}$	5V: 100mV max. 12V/24V: 150mV max	5V: 70 mV max. 12V: 120 mV max. 24V: 150mV max.	12V: 120mV max. 24V: 150mV max.	5V: 70 mV max. 12V: 120 mV max. 24V: 150mV max.	5V: 100mV max. 12V: 120 mV max. 24V: 150mV max.
	Overcurrent Protection			105\% min. (auto reset) ${ }^{2}$				
	Overvoltage Protection			Voltage limitation at 115% min.		Intermittent operation or output off at 115% min. ${ }^{3}$		
	Operation Indicator			green LED				
	Between input and output terminals			3000 V AC, 1 minute				
	Between input and ground terminals			2000 V AC, 1 minute				
	Between output and ground terminals			500 V DC, 1 minute				
Insulation Resistance				100M Ω minimum, 500 V DC megger (between input and output terminals, between input and ground terminals)				
Operating Temperature				$\begin{gathered} -20 \text { to }+70^{\circ} \mathrm{C} \\ \text { (no freezing, see output derating) } \end{gathered}$		$-10 \text { to }+70^{\circ} \mathrm{C}$ (no freezing, see output derating)		
Operating Humidity				20 to 85\% RH (no condensation)				
Storage Temperature				-40 to $+85^{\circ} \mathrm{C}$ (no freezing)				
Storage Humidity				10 to 95\% RH (no condensation)				
Vibration Resistance				10 to $55 \mathrm{~Hz}, 20 \mathrm{~m} / \mathrm{s}^{2}$ constant, 2 hours each in 3 axes				
Shock Resistance				$200 \mathrm{~m} / \mathrm{s}^{2}, 1$ shock each in 3 axes				
EMC	EMI			EN55022 Class B				
	EMS			EN55024				
Safety Standards				IEC/EN60950-1, UL60950-1, CSA C22.2 No. 60950-1				
Dimensions ($\mathrm{H} \times \mathrm{W} \times \mathrm{D}$) (mm)				$50.8 \mathrm{H} \times 28 \mathrm{~W} \times 62 \mathrm{D}$	$50.8 \mathrm{H} \times 28.5 \mathrm{~W} \times 79 \mathrm{D}$	$82 \mathrm{H} \times 35 \mathrm{~W} \times 99 \mathrm{D}$	$95 \mathrm{H} \times 38 \mathrm{~W} \times 129 \mathrm{D}$	$95 \mathrm{H} \times 38 \mathrm{~W} \times 159 \mathrm{D}$
Weight (approx.)				130 g	180 g	340 g	500 g	700 g
Terminal Screw				M3		M3.5		

1. See "Output Current vs. Input Voltage" characteristics next page. Not subject to safety standards. When using DC input, connect a fuse to the input terminal for DC input protection.
2. Overload for 30 seconds or longer may damage the internal elements.
3. One minute after the output has been turned off, turn on the AC input again.

Characteristics

Ol Touchscreens

Operating Temperature vs. Output Current (Derating Curves)

Conditions: Natural air cooling (operating temperature is the temperature around the power supply)

PS3X-D/0/E

Overcurrent Protection Characteristics

Output Current vs. Input Voltage ($\mathrm{TA}=\mathbf{2 5}^{\circ} \mathrm{C}$)

PS3X-B/C
PS3X-D/0/E

Operating Temperature by Safety Standards

Note: Observe the derating curves when operating PS3X power supplies.

PS3X-0

Terminal Markings

PS3X-B/C

PS3X-D/0

PS3X-C

PS3X-E

PS3X-D

PS3X-E

(1)		Marking	Name	Description
		L, N	AC Input Terminal	Accepts a wide range of voltage and frequency. Polarity does not matter when using DC input.
충		$\stackrel{1}{\theta}$	Ground Terminal	Be sure to connect this terminal to a proper ground.
$-\mathrm{V}$		$+\mathrm{V},-\mathrm{V}$	DC Output Terminals	Positive and negative output terminals
		V.ADJ	Output Voltage Adjustment	Allows adjustment within $\pm 10 \%$. Turning clockwise increases the output voltage.
		LED	Power status	Illuminates (green) when input power is applied.

L-shaped Mounting Bracket

PS9Z-3E3B (for 50W)

PS9Z-3N3B (for 25W)

PS9Z-3N3E (for 75W/100W)

DIN-rail Mounting Bracket

Part Number	Applicable Power Supply	L1	L2	L3	H1	H2
	H3					
PS9Z-3N4B	PS3X-B	95	105.5	35	5.2	20.5
	PS3X-C	95	113	35	5.2	20.5
PS9Z-3E4C	PS3X-D	136	117^{*}	35	5.2	20.5
PS9Z-3E4D	PS3X-0	188	141^{*}	39.5	5.2	19.7

Installation Notes

1. When mounting the PS3X switching power supply, see the figure on the right.
2. See dimension drawings for mounting hole layouts.
3. Use M3 screws for mounting. Choose screws that protrude 2.5 to 4 mm from the surface of the switching power supply.
4. Do not cover the openings of the

Mounting A Mounting B (standard)
 switching power supply. Ensure proper heat dissipation by convection.
5. Maintain a minimum of 20 mm clearance around the power supply.
6. When derating of the output does not work, provide forced air-cooling.
7. Make sure to wire the ground terminal correctly.
8. For wiring, use wires with heat resistance of $60^{\circ} \mathrm{C}$ or higher. Use copper wire.
9. Recommended tightening torque of terminal screws: $0.8 \mathrm{~N} \cdot \mathrm{~m}$

Adjustment of Output Voltage

The output voltage can be adjusted within $\pm 10 \%$ of the rated output voltage by using the V.ADJ control. Turning the V.ADJ clockwise increases the output voltage. Turning counterclockwise decreases the output voltage. Note that overvoltage protection may work when increasing the output voltage.

Instructions

Overcurrent Protection

The output voltage drops automatically when an overcurrent flows, resulting in intermittent operation. Normal voltage is automatically restored when the load returns to normal conditions. However, overcurrent for a prolonged period of time or short-circuit causes the internal elements to deteriorate or break down.

Overvoltage Protection

PS3X-B/C: Voltage limit and auto-recovery method. The switching power supplies operate normally when voltage returns to normal.

PS3X-D/Q/E: The output is turned off when an overvoltage is applied. When the output voltage has dropped due to an overvoltage, turn the input off, and after one minute, turn the input on again.

Series Operation

When connecting two switching power supplies in a series, insert a Schottky diode to each output.

Parallel Operation

Parallel operation is not possible.

Insulation/Dielectric Test

When performing an insulation/dielectric test, short the input (between AC) and output (between + and -). Do not apply or interrupt the voltage suddenly, otherwise surge voltage may be generated and the power supply may be damaged.

Safety Precautions

- Do not use switching power supplies with equipment where failure or inadvertent operation may harm anyone, such as medical, aerospace, railway, nuclear, etc. PS3X switching power supplies are designed for use in general electric equipment such as office, communication, measuring, and industrial electric devices.
- Do not disassemble, repair, or modify the power supplies, otherwise electric shock, fire, or failure may occur.
- Do not install the switching power supply in places where someone will touch it when input voltage is applied. Do not touch the switching power supply while input voltage is applied and right after the power is turned off, because high temperature and high voltage may cause burns and electric shocks.
- Do not short circuit the output terminals or output lead wires, otherwise fire or damage may occur.
- Provide the final product with protection against failure or damage that may be caused by malfunction of the switching power supply. Damaged switching power supply may cause overvoltage on the output terminals, or may cause voltage drop.
- Turn off power before wiring. Also, make sure to wire correctly. Improper wiring may cause electric fire or damage.
- Do not use switching power supplies to charge rechargeable batteries.
- Make sure that the input voltage does not exceed the rating. Note polarity of input and output terminals and wire correctly. Incorrect wiring may cause blown fuses (AC input power), smoke or fire.
- Do not touch the inside of the switching power supply, and make sure that foreign objects do not enter the switching power supply, otherwise an accident or failure may occur.
- Observe the temperature derating curves. Operating temperature refers to the temperature around the lower part of the switching power supply. Failure to observe the derating curves could result in an internal temperature rise and possible failure of the switching power supply.
- The fuse inside the switching power supply is for AC input. When using with DC input, install an external fuse.
- Do not set the V. ADJ control over the setting range, otherwise performance deterioration or failure may occur.
- When failure or error occurs, shut down the input to the switching power supply, and contact IDEC.
- Do not use or store the switching power supply in a place subject to extreme vibration or shocks, otherwise failure will result.
- Do not use the switching power supply where it is subject to or near:
- Direct sunlight, heat or high temperatures
- Metal powder, oil, chemicals or hydrogen sulfide
- Highly humid areas, such as a basement or conservatory
- Inside freezers or refrigerators, near cooler exhaust, or other cold environments

